Workforce Structure

Employee Distribution by Gender and Job Level

Male Female Total
Management
Personnel
${dataInfo.area1_block1_type1_value1} ${dataInfo.area1_block1_type1_value2} ${dataInfo.area1_block1_type1_value1 + dataInfo.area1_block1_type1_value2}
Technical
Staff
${dataInfo.area1_block1_type2_value1} ${dataInfo.area1_block1_type2_value2} ${dataInfo.area1_block1_type2_value1 + dataInfo.area1_block1_type2_value2}
Other
Employees
${dataInfo.area1_block1_type3_value1} ${dataInfo.area1_block1_type3_value2} ${dataInfo.area1_block1_type3_value1 + dataInfo.area1_block1_type3_value2}
Subtotal ${dataInfo.area1_block1_type1_value1 + dataInfo.area1_block1_type2_value1 + dataInfo.area1_block1_type3_value1} ${dataInfo.area1_block1_type1_value2 + dataInfo.area1_block1_type2_value2 + dataInfo.area1_block1_type3_value2} ${dataInfo.area1_block1_type1_value1 + dataInfo.area1_block1_type2_value1 + dataInfo.area1_block1_type3_value1 + dataInfo.area1_block1_type1_value2 + dataInfo.area1_block1_type2_value2 + dataInfo.area1_block1_type3_value2}
Percentage
(by Gender)
${(dataInfo.area1_block1_type1_value1 + dataInfo.area1_block1_type2_value1 + dataInfo.area1_block1_type3_value1)*100/(dataInfo.area1_block1_type1_value1 + dataInfo.area1_block1_type2_value1 + dataInfo.area1_block1_type3_value1 + dataInfo.area1_block1_type1_value2 + dataInfo.area1_block1_type2_value2 + dataInfo.area1_block1_type3_value2) | roundToTwo}% ${(dataInfo.area1_block1_type1_value2 + dataInfo.area1_block1_type2_value2 + dataInfo.area1_block1_type3_value2)*100/(dataInfo.area1_block1_type1_value1 + dataInfo.area1_block1_type2_value1 + dataInfo.area1_block1_type3_value1 + dataInfo.area1_block1_type1_value2 + dataInfo.area1_block1_type2_value2 + dataInfo.area1_block1_type3_value2) | roundToTwo}% 100%
Management
Personnel
Male${(dataInfo.area1_block1_type1_value1 * 100) / (dataInfo.area1_block1_type1_value1 + dataInfo.area1_block1_type1_value2) | round}%
Female${(dataInfo.area1_block1_type1_value2 * 100) / (dataInfo.area1_block1_type1_value1 + dataInfo.area1_block1_type1_value2) | round}%
Technical
Staff
Male${(dataInfo.area1_block1_type2_value1 * 100) / (dataInfo.area1_block1_type2_value1 + dataInfo.area1_block1_type2_value2) | round}%
Female${(dataInfo.area1_block1_type2_value2 * 100) / (dataInfo.area1_block1_type2_value1 + dataInfo.area1_block1_type2_value2) | round}%
Other
Employees
Male${(dataInfo.area1_block1_type3_value1 * 100) / (dataInfo.area1_block1_type3_value1 + dataInfo.area1_block1_type3_value2) | round}%
Female${(dataInfo.area1_block1_type3_value2 * 100) / (dataInfo.area1_block1_type3_value1 + dataInfo.area1_block1_type3_value2) | round}%
Note: Employee types are explained as follows:
Management Personnel:Management Positions
Technical Staff:Non-Management RD Engineers (e.g., Hardware/Mechanical/Firmware/RF/Safety, etc.)
Other Employees:Non-Management Staff
Age
Distribution
51 years old (inclusive)17%
30-50 years old13%
<30 years old70%
Education
Distribution
Master's and PhD14%
Bachelor's4%
Associate Degree28%
High School and Below54%

Number and Percentage of New Employees in 2023 by Gender and Age Group
Male Female Total
<30 years old ${dataInfo.area1_block2_type1_value1} ${dataInfo.area1_block2_type1_value2} ${dataInfo.area1_block2_type1_value1 + dataInfo.area1_block2_type1_value2}
30-50 years old ${dataInfo.area1_block2_type2_value1} ${dataInfo.area1_block2_type2_value2} ${dataInfo.area1_block2_type2_value1 + dataInfo.area1_block2_type2_value2}
50 years old ${dataInfo.area1_block2_type3_value1} ${dataInfo.area1_block2_type3_value2} ${dataInfo.area1_block2_type3_value1 + dataInfo.area1_block2_type3_value2}
Total ${dataInfo.area1_block2_type1_value1 + dataInfo.area1_block2_type2_value1 + dataInfo.area1_block2_type3_value1} ${dataInfo.area1_block2_type1_value2 + dataInfo.area1_block2_type2_value2 + dataInfo.area1_block2_type3_value2} ${dataInfo.area1_block2_type1_value1 + dataInfo.area1_block2_type2_value1 + dataInfo.area1_block2_type3_value1 + dataInfo.area1_block2_type1_value2 + dataInfo.area1_block2_type2_value2 + dataInfo.area1_block2_type3_value2}
New Hire Rate ${(dataInfo.area1_block2_type1_value1 + dataInfo.area1_block2_type2_value1 + dataInfo.area1_block2_type3_value1) * 100 / (dataInfo.area1_block1_type1_value1 + dataInfo.area1_block1_type2_value1 + dataInfo.area1_block1_type3_value1) | roundToTwo}% ${(dataInfo.area1_block2_type1_value2 + dataInfo.area1_block2_type2_value2 + dataInfo.area1_block2_type3_value2) * 100 / (dataInfo.area1_block1_type1_value2 + dataInfo.area1_block1_type2_value2 + dataInfo.area1_block1_type3_value2) | roundToTwo}% ${(dataInfo.area1_block2_type1_value1 + dataInfo.area1_block2_type2_value1 + dataInfo.area1_block2_type3_value1 + dataInfo.area1_block2_type1_value2 + dataInfo.area1_block2_type2_value2 + dataInfo.area1_block2_type3_value2) * 100 / (dataInfo.area1_block1_type1_value1 + dataInfo.area1_block1_type2_value1 + dataInfo.area1_block1_type3_value1 + dataInfo.area1_block1_type1_value2 + dataInfo.area1_block1_type2_value2 + dataInfo.area1_block1_type3_value2) | roundToTwo}%
Number and Percentage of Employees Who Left in 2023 by Gender and Age Group
Male Female Total
<30 years old ${dataInfo.area1_block3_type1_value1} ${dataInfo.area1_block3_type1_value2} ${dataInfo.area1_block3_type1_value1 + dataInfo.area1_block3_type1_value2}
30-50 years old ${dataInfo.area1_block3_type2_value1} ${dataInfo.area1_block3_type2_value2} ${dataInfo.area1_block3_type2_value1 + dataInfo.area1_block3_type2_value2}
50 years old ${dataInfo.area1_block3_type3_value1} ${dataInfo.area1_block3_type3_value2} ${dataInfo.area1_block3_type3_value1 + dataInfo.area1_block3_type3_value2}
Total ${dataInfo.area1_block3_type1_value1 + dataInfo.area1_block3_type2_value1 + dataInfo.area1_block3_type3_value1} ${dataInfo.area1_block3_type1_value2 + dataInfo.area1_block3_type2_value2 + dataInfo.area1_block3_type3_value2} ${dataInfo.area1_block3_type1_value1 + dataInfo.area1_block3_type2_value1 + dataInfo.area1_block3_type3_value1 + dataInfo.area1_block3_type1_value2 + dataInfo.area1_block3_type2_value2 + dataInfo.area1_block3_type3_value2}
Turnover Rate ${(dataInfo.area1_block3_type1_value1 + dataInfo.area1_block3_type2_value1 + dataInfo.area1_block3_type3_value1) * 100 / (dataInfo.area1_block1_type1_value1 + dataInfo.area1_block1_type2_value1 + dataInfo.area1_block1_type3_value1) | roundToTwo}% ${(dataInfo.area1_block3_type1_value2 + dataInfo.area1_block3_type2_value2 + dataInfo.area1_block3_type3_value2) * 100 / (dataInfo.area1_block1_type1_value2 + dataInfo.area1_block1_type2_value2 + dataInfo.area1_block1_type3_value2) | roundToTwo}% ${(dataInfo.area1_block3_type1_value1 + dataInfo.area1_block3_type2_value1 + dataInfo.area1_block3_type3_value1 + dataInfo.area1_block3_type1_value2 + dataInfo.area1_block3_type2_value2 + dataInfo.area1_block3_type3_value2) * 100 / (dataInfo.area1_block1_type1_value1 + dataInfo.area1_block1_type2_value1 + dataInfo.area1_block1_type3_value1 + dataInfo.area1_block1_type1_value2 + dataInfo.area1_block1_type2_value2 + dataInfo.area1_block1_type3_value2) | roundToTwo}%
Male Female Total
Management
Personnel
${dataInfo.area2_block1_type1_value1} ${dataInfo.area2_block1_type1_value2} ${dataInfo.area2_block1_type1_value1 + dataInfo.area2_block1_type1_value2}
Technical
Staff
${dataInfo.area2_block1_type2_value1} ${dataInfo.area2_block1_type2_value2} ${dataInfo.area2_block1_type2_value1 + dataInfo.area2_block1_type2_value2}
Other
Employees
${dataInfo.area2_block1_type3_value1} ${dataInfo.area2_block1_type3_value2} ${dataInfo.area2_block1_type3_value1 + dataInfo.area2_block1_type3_value2}
Subtotal ${dataInfo.area2_block1_type1_value1 + dataInfo.area2_block1_type2_value1 + dataInfo.area2_block1_type3_value1} ${dataInfo.area2_block1_type1_value2 + dataInfo.area2_block1_type2_value2 + dataInfo.area2_block1_type3_value2} ${dataInfo.area2_block1_type1_value1 + dataInfo.area2_block1_type2_value1 + dataInfo.area2_block1_type3_value1 + dataInfo.area2_block1_type1_value2 + dataInfo.area2_block1_type2_value2 + dataInfo.area2_block1_type3_value2}
Percentage
(by Gender)
${(dataInfo.area2_block1_type1_value1 + dataInfo.area2_block1_type2_value1 + dataInfo.area2_block1_type3_value1)*100/(dataInfo.area2_block1_type1_value1 + dataInfo.area2_block1_type2_value1 + dataInfo.area2_block1_type3_value1 + dataInfo.area2_block1_type1_value2 + dataInfo.area2_block1_type2_value2 + dataInfo.area2_block1_type3_value2) | roundToTwo}% ${(dataInfo.area2_block1_type1_value2 + dataInfo.area2_block1_type2_value2 + dataInfo.area2_block1_type3_value2)*100/(dataInfo.area2_block1_type1_value1 + dataInfo.area2_block1_type2_value1 + dataInfo.area2_block1_type3_value1 + dataInfo.area2_block1_type1_value2 + dataInfo.area2_block1_type2_value2 + dataInfo.area2_block1_type3_value2) | roundToTwo}% 100%
Management
Personnel
Male${(dataInfo.area2_block1_type1_value1 * 100) / (dataInfo.area2_block1_type1_value1 + dataInfo.area2_block1_type1_value2) | round}%
Female${(dataInfo.area2_block1_type1_value2 * 100) / (dataInfo.area2_block1_type1_value1 + dataInfo.area2_block1_type1_value2) | round}%
Technical
Staff
Male${(dataInfo.area2_block1_type2_value1 * 100) / (dataInfo.area2_block1_type2_value1 + dataInfo.area2_block1_type2_value2) | round}%
Female${(dataInfo.area2_block1_type2_value2 * 100) / (dataInfo.area2_block1_type2_value1 + dataInfo.area2_block1_type2_value2) | round}%
Other
Employees
Male${(dataInfo.area2_block1_type3_value1 * 100) / (dataInfo.area2_block1_type3_value1 + dataInfo.area2_block1_type3_value2) | round}%
Female${(dataInfo.area2_block1_type3_value2 * 100) / (dataInfo.area2_block1_type3_value1 + dataInfo.area2_block1_type3_value2) | round}%
Note: Employee types are explained as follows:
Management Personnel:Management Positions
Technical Staff:Non-Management RD Staff
Other Employees:Non-Management Staff
Age
Distribution
51 years old (inclusive)2%
30-50 years old65%
<30 years old32%
Education
Distribution
Master's and PhD1.1%
Bachelor's18.3%
Associate Degree22.3%
High School and Below58.3%

Number and Percentage of New Employees in 2023 by Gender and Age Group(Suzhou Plant)
Male Female Total
<30 years old ${dataInfo.area2_block2_type1_value1} ${dataInfo.area2_block2_type1_value2} ${dataInfo.area2_block2_type1_value1 + dataInfo.area2_block2_type1_value2}
30-50 years old ${dataInfo.area2_block2_type2_value1} ${dataInfo.area2_block2_type2_value2} ${dataInfo.area2_block2_type2_value1 + dataInfo.area2_block2_type2_value2}
50 years old ${dataInfo.area2_block2_type3_value1} ${dataInfo.area2_block2_type3_value2} ${dataInfo.area2_block2_type3_value1 + dataInfo.area2_block2_type3_value2}
Total ${dataInfo.area2_block2_type1_value1 + dataInfo.area2_block2_type2_value1 + dataInfo.area2_block2_type3_value1} ${dataInfo.area2_block2_type1_value2 + dataInfo.area2_block2_type2_value2 + dataInfo.area2_block2_type3_value2} ${dataInfo.area2_block2_type1_value1 + dataInfo.area2_block2_type2_value1 + dataInfo.area2_block2_type3_value1 + dataInfo.area2_block2_type1_value2 + dataInfo.area2_block2_type2_value2 + dataInfo.area2_block2_type3_value2}
New Hire Rate ${(dataInfo.area2_block2_type1_value1 + dataInfo.area2_block2_type2_value1 + dataInfo.area2_block2_type3_value1) * 100 / (dataInfo.area2_block1_type1_value1 + dataInfo.area2_block1_type2_value1 + dataInfo.area2_block1_type3_value1) | roundToTwo}% ${(dataInfo.area2_block2_type1_value2 + dataInfo.area2_block2_type2_value2 + dataInfo.area2_block2_type3_value2) * 100 / (dataInfo.area2_block1_type1_value2 + dataInfo.area2_block1_type2_value2 + dataInfo.area2_block1_type3_value2) | roundToTwo}% ${(dataInfo.area2_block2_type1_value1 + dataInfo.area2_block2_type2_value1 + dataInfo.area2_block2_type3_value1 + dataInfo.area2_block2_type1_value2 + dataInfo.area2_block2_type2_value2 + dataInfo.area2_block2_type3_value2) * 100 / (dataInfo.area2_block1_type1_value1 + dataInfo.area2_block1_type2_value1 + dataInfo.area2_block1_type3_value1 + dataInfo.area2_block1_type1_value2 + dataInfo.area2_block1_type2_value2 + dataInfo.area2_block1_type3_value2) | roundToTwo}%
Number and Percentage of Employees Who Left in 2023 by Gender and Age Group(Suzhou Plant)
Male Female Total
<30 years old ${dataInfo.area2_block3_type1_value1} ${dataInfo.area2_block3_type1_value2} ${dataInfo.area2_block3_type1_value1 + dataInfo.area2_block3_type1_value2}
30-50 years old ${dataInfo.area2_block3_type2_value1} ${dataInfo.area2_block3_type2_value2} ${dataInfo.area2_block3_type2_value1 + dataInfo.area2_block3_type2_value2}
50 years old ${dataInfo.area2_block3_type3_value1} ${dataInfo.area2_block3_type3_value2} ${dataInfo.area2_block3_type3_value1 + dataInfo.area2_block3_type3_value2}
Total ${dataInfo.area2_block3_type1_value1 + dataInfo.area2_block3_type2_value1 + dataInfo.area2_block3_type3_value1} ${dataInfo.area2_block3_type1_value2 + dataInfo.area2_block3_type2_value2 + dataInfo.area2_block3_type3_value2} ${dataInfo.area2_block3_type1_value1 + dataInfo.area2_block3_type2_value1 + dataInfo.area2_block3_type3_value1 + dataInfo.area2_block3_type1_value2 + dataInfo.area2_block3_type2_value2 + dataInfo.area2_block3_type3_value2}
Turnover Rate ${(dataInfo.area2_block3_type1_value1 + dataInfo.area2_block3_type2_value1 + dataInfo.area2_block3_type3_value1) * 100 / (dataInfo.area2_block1_type1_value1 + dataInfo.area2_block1_type2_value1 + dataInfo.area2_block1_type3_value1) | roundToTwo}% ${(dataInfo.area2_block3_type1_value2 + dataInfo.area2_block3_type2_value2 + dataInfo.area2_block3_type3_value2) * 100 / (dataInfo.area2_block1_type1_value2 + dataInfo.area2_block1_type2_value2 + dataInfo.area2_block1_type3_value2) | roundToTwo}% ${(dataInfo.area2_block3_type1_value1 + dataInfo.area2_block3_type2_value1 + dataInfo.area2_block3_type3_value1 + dataInfo.area2_block3_type1_value2 + dataInfo.area2_block3_type2_value2 + dataInfo.area2_block3_type3_value2) * 100 / (dataInfo.area2_block1_type1_value1 + dataInfo.area2_block1_type2_value1 + dataInfo.area2_block1_type3_value1 + dataInfo.area2_block1_type1_value2 + dataInfo.area2_block1_type2_value2 + dataInfo.area2_block1_type3_value2) | roundToTwo}%
Male Female Total
Management
Personnel
${dataInfo.area3_block1_type1_value1} ${dataInfo.area3_block1_type1_value2} ${dataInfo.area3_block1_type1_value1 + dataInfo.area3_block1_type1_value2}
Technical
Staff
${dataInfo.area3_block1_type2_value1} ${dataInfo.area3_block1_type2_value2} ${dataInfo.area3_block1_type2_value1 + dataInfo.area3_block1_type2_value2}
Other
Employees
${dataInfo.area3_block1_type3_value1} ${dataInfo.area3_block1_type3_value2} ${dataInfo.area3_block1_type3_value1 + dataInfo.area3_block1_type3_value2}
Subtotal ${dataInfo.area3_block1_type1_value1 + dataInfo.area3_block1_type2_value1 + dataInfo.area3_block1_type3_value1} ${dataInfo.area3_block1_type1_value2 + dataInfo.area3_block1_type2_value2 + dataInfo.area3_block1_type3_value2} ${dataInfo.area3_block1_type1_value1 + dataInfo.area3_block1_type2_value1 + dataInfo.area3_block1_type3_value1 + dataInfo.area3_block1_type1_value2 + dataInfo.area3_block1_type2_value2 + dataInfo.area3_block1_type3_value2}
Percentage
(by Gender)
${(dataInfo.area3_block1_type1_value1 + dataInfo.area3_block1_type2_value1 + dataInfo.area3_block1_type3_value1)*100/(dataInfo.area3_block1_type1_value1 + dataInfo.area3_block1_type2_value1 + dataInfo.area3_block1_type3_value1 + dataInfo.area3_block1_type1_value2 + dataInfo.area3_block1_type2_value2 + dataInfo.area3_block1_type3_value2) | roundToTwo}% ${(dataInfo.area3_block1_type1_value2 + dataInfo.area3_block1_type2_value2 + dataInfo.area3_block1_type3_value2)*100/(dataInfo.area3_block1_type1_value1 + dataInfo.area3_block1_type2_value1 + dataInfo.area3_block1_type3_value1 + dataInfo.area3_block1_type1_value2 + dataInfo.area3_block1_type2_value2 + dataInfo.area3_block1_type3_value2) | roundToTwo}% 100%
Management
Personnel
Male${(dataInfo.area3_block1_type1_value1 * 100) / (dataInfo.area3_block1_type1_value1 + dataInfo.area3_block1_type1_value2) | round}%
Female${(dataInfo.area3_block1_type1_value2 * 100) / (dataInfo.area3_block1_type1_value1 + dataInfo.area3_block1_type1_value2) | round}%
Technical
Staff
Male${(dataInfo.area3_block1_type2_value1 * 100) / (dataInfo.area3_block1_type2_value1 + dataInfo.area3_block1_type2_value2) | round}%
Female${(dataInfo.area3_block1_type2_value2 * 100) / (dataInfo.area3_block1_type2_value1 + dataInfo.area3_block1_type2_value2) | round}%
Other
Employees
Male${(dataInfo.area3_block1_type3_value1 * 100) / (dataInfo.area3_block1_type3_value1 + dataInfo.area3_block1_type3_value2) | round}%
Female${(dataInfo.area3_block1_type3_value2 * 100) / (dataInfo.area3_block1_type3_value1 + dataInfo.area3_block1_type3_value2) | round}%
Note: Employee types are explained as follows:
Management Deputy Section Chief and above L20 (inclusive)
Technical Staff:Non-Management RD (e.g., Hardware/Mechanical/Firmware/RF/Safety, etc.)
Other Employees:Other Staff
Age
Distribution
51 years old (inclusive)1%
30-50 years old46%
<30 years old53%
Education
Distribution
Master's and PhD0.1%
Bachelor's5.8%
Associate Degree1.8%
High School and Below92.3%

Number and Percentage of New Employees in 2023 by Gender and Age Group(Vietnam Plant)
Male Female Total
<30 years old ${dataInfo.area3_block2_type1_value1} ${dataInfo.area3_block2_type1_value2} ${dataInfo.area3_block2_type1_value1 + dataInfo.area3_block2_type1_value2}
30-50 years old ${dataInfo.area3_block2_type2_value1} ${dataInfo.area3_block2_type2_value2} ${dataInfo.area3_block2_type2_value1 + dataInfo.area3_block2_type2_value2}
50 years old ${dataInfo.area3_block2_type3_value1} ${dataInfo.area3_block2_type3_value2} ${dataInfo.area3_block2_type3_value1 + dataInfo.area3_block2_type3_value2}
Total ${dataInfo.area3_block2_type1_value1 + dataInfo.area3_block2_type2_value1 + dataInfo.area3_block2_type3_value1} ${dataInfo.area3_block2_type1_value2 + dataInfo.area3_block2_type2_value2 + dataInfo.area3_block2_type3_value2} ${dataInfo.area3_block2_type1_value1 + dataInfo.area3_block2_type2_value1 + dataInfo.area3_block2_type3_value1 + dataInfo.area3_block2_type1_value2 + dataInfo.area3_block2_type2_value2 + dataInfo.area3_block2_type3_value2}
New Hire Rate ${(dataInfo.area3_block2_type1_value1 + dataInfo.area3_block2_type2_value1 + dataInfo.area3_block2_type3_value1) * 100 / (dataInfo.area3_block1_type1_value1 + dataInfo.area3_block1_type2_value1 + dataInfo.area3_block1_type3_value1) | roundToTwo}% ${(dataInfo.area3_block2_type1_value2 + dataInfo.area3_block2_type2_value2 + dataInfo.area3_block2_type3_value2) * 100 / (dataInfo.area3_block1_type1_value2 + dataInfo.area3_block1_type2_value2 + dataInfo.area3_block1_type3_value2) | roundToTwo}% ${(dataInfo.area3_block2_type1_value1 + dataInfo.area3_block2_type2_value1 + dataInfo.area3_block2_type3_value1 + dataInfo.area3_block2_type1_value2 + dataInfo.area3_block2_type2_value2 + dataInfo.area3_block2_type3_value2) * 100 / (dataInfo.area3_block1_type1_value1 + dataInfo.area3_block1_type2_value1 + dataInfo.area3_block1_type3_value1 + dataInfo.area3_block1_type1_value2 + dataInfo.area3_block1_type2_value2 + dataInfo.area3_block1_type3_value2) | roundToTwo}%
Number and Percentage of Employees Who Left in 2023 by Gender and Age Group(Vietnam Plant)
Male Female Total
<30 years old ${dataInfo.area3_block3_type1_value1} ${dataInfo.area3_block3_type1_value2} ${dataInfo.area3_block3_type1_value1 + dataInfo.area3_block3_type1_value2}
30-50 years old ${dataInfo.area3_block3_type2_value1} ${dataInfo.area3_block3_type2_value2} ${dataInfo.area3_block3_type2_value1 + dataInfo.area3_block3_type2_value2}
50 years old ${dataInfo.area3_block3_type3_value1} ${dataInfo.area3_block3_type3_value2} ${dataInfo.area3_block3_type3_value1 + dataInfo.area3_block3_type3_value2}
Total ${dataInfo.area3_block3_type1_value1 + dataInfo.area3_block3_type2_value1 + dataInfo.area3_block3_type3_value1} ${dataInfo.area3_block3_type1_value2 + dataInfo.area3_block3_type2_value2 + dataInfo.area3_block3_type3_value2} ${dataInfo.area3_block3_type1_value1 + dataInfo.area3_block3_type2_value1 + dataInfo.area3_block3_type3_value1 + dataInfo.area3_block3_type1_value2 + dataInfo.area3_block3_type2_value2 + dataInfo.area3_block3_type3_value2}
Turnover Rate ${(dataInfo.area3_block3_type1_value1 + dataInfo.area3_block3_type2_value1 + dataInfo.area3_block3_type3_value1) * 100 / (dataInfo.area3_block1_type1_value1 + dataInfo.area3_block1_type2_value1 + dataInfo.area3_block1_type3_value1) | roundToTwo}% ${(dataInfo.area3_block3_type1_value2 + dataInfo.area3_block3_type2_value2 + dataInfo.area3_block3_type3_value2) * 100 / (dataInfo.area3_block1_type1_value2 + dataInfo.area3_block1_type2_value2 + dataInfo.area3_block1_type3_value2) | roundToTwo}% ${(dataInfo.area3_block3_type1_value1 + dataInfo.area3_block3_type2_value1 + dataInfo.area3_block3_type3_value1 + dataInfo.area3_block3_type1_value2 + dataInfo.area3_block3_type2_value2 + dataInfo.area3_block3_type3_value2) * 100 / (dataInfo.area3_block1_type1_value1 + dataInfo.area3_block1_type2_value1 + dataInfo.area3_block1_type3_value1 + dataInfo.area3_block1_type1_value2 + dataInfo.area3_block1_type2_value2 + dataInfo.area3_block1_type3_value2) | roundToTwo}%
Note 1: The turnover rate is calculated as "the total number of employees who left in the category for the year" / "the total number of employees in the category as of December 31 of the year."
Note 2: Due to the nature of the work, the turnover rate is higher in the plant locations.

Labor-Management Communication

AmTRAN actively establishes communication bridges with employees, creating a positive work environment that allows the company to understand and appropriately address employees' thoughts and concerns. The main communication channels are as follows:

${dataInfo.channel1_title}

  • ${sub_title}

${dataInfo.channel2_title}

  • ${sub_title}

${dataInfo.channel3_title}

  • ${sub_title}

${dataInfo.channel4_title}

  • ${sub_title}

Human Rights Protection

Additionally, for specific human rights items, AmTRAN's Taiwan headquarters, Suzhou plant, and Vietnam plant have established additional control measures:
${dataInfo.control1_title}
  1. ${desc}
${dataInfo.control2_title}
  1. ${desc}
TOP